

Муниципальное бюджетное общеобразовательное учреждение

Красноармейская средняя общеобразовательная школа

Рассмотрена на заседании школьного методического объединения ______ А. С. Петросян Протокол № 1 от 28.08. 2023 г.

Принята на заседании педагогического совета Протокол № 2 от 29.08.2023 г.

Утверждена приказом директора _______ Л.В.Гришина Приказ № 316 от 29 .08.2023 г.

РАБОЧАЯ ПРОГРАММА

по внеурочной деятельности «Занимательная физика» для 8 класса на 2023-2024 учебный год количество часов- 34

Программу составила: Петросян А. С. учитель физики и информатики

Рабочая программа внеурочной деятельности «Занимательная физика» по научно-познавательному направлению разработана в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования второго поколения на основе Фундаментального ядра содержания общего образования / Рос. акад. Наук, Рос. акад. образования; под ред. В.В.Козлова, А.М.Кондакова (М.:Просвещение, 2011) и Требований к результатам обучения, представленных в Стандарте основного общего образования.

п.Красноармейский

Пояснительная записка

Организация внеурочной деятельности в МБОУ Красноармейской СОШ опирается на следующие нормативные документы:

План внеурочной деятельности разработан с учетом требований следующих нормативных документов:

- Федеральный Закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Минобрнауки России от 31.05.2021 № 287 (далее обновленный ФГОС ООО)
- Приказ Министерства просвещения РФ от 22 марта 2021г. №115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего образования»;
- Приказ Минпросвещения России от 18.05.2023 N 370 "Об утверждении федеральной образовательной программы основного общего образования"
- Распоряжение Комитета по образованию от 15.04.2022 № 801-р «О формировании календарных учебных графиков государственных образовательных учреждений Санкт Петербурга, реализующих основные общеобразовательные программы, на 2022/2023 учебный год»
- Распоряжения Комитета по образованию от 17.03.2023 №270-р «О внесении изменений в распоряжение Комитета по образованию от 15.04.2022 №801-р»
- Инструктивно-методическое письмо Комитета по образованию от 21.05.2015 N 03- 20-2057/15-0-0 «Об организации внеурочной деятельности при реализации федеральных государственных образовательных стандартов начального общего и основного общего образования в образовательных организациях Санкт-Петербурга»
- Письмо Минобрнауки России от 18.08.2017 № 09-1672 «О направлении Методических рекомендаций по уточнению понятия и содержания внеурочной деятельности в рамках реализации основных общеобразовательных программ, в том числе в части проектной деятельности» Приказ МБОУ Красноармейской СОШ № 316 от 29.08.2023г(для1-8,10кл.), №317 от 29.08.2023г (для 9,11кл)

Курс «Физика вокруг нас» реализует общеинтелектуальное направление во внеурочной деятельности в 8 классах в соответствии с Федеральным государственным стандартом основного общего образования второго поколения.

Данная программа позволяет учащимся ознакомиться с методикой организации и проведения экспериментально-исследовательской деятельности учащихся в современном учебном процессе по физике, ознакомиться со многими интересными вопросами физики на данном этапе обучения, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки. Экспериментальная деятельность будет способствовать развитию мыслительных операций и общему интеллектуальному развитию.

Не менее важным фактором реализации данной программы является стремление развить у учащихся умения самостоятельно работать, думать, экспериментировать в домашних условиях, а также совершенствовать навыки аргументации собственной позиции по определённому вопросу.

Содержание программы соответствует познавательным возможностям школьников и предоставляет им возможность работать на уровне повышенных требований, развивая учебную мотивацию.

Содержание занятий курса представляет собой введение в мир экспериментальной физики, в котором учащиеся станут исследователями и научаться познавать окружающий их мир, то есть освоят основные методы познания.

В условиях реализации образовательной программы широко используются методы учебного, исследовательского, проблемного эксперимента. Ребёнок в процессе познания, приобретая чувственный (феноменологический) опыт, переживает полученные ощущения и впечатления. Эти переживания пробуждают и побуждают процесс мышления. Специфическая форма организации позволяет учащимся ознакомиться со многими интересными вопросами физики на данном этапе обучения, выходящими за рамки школьной программы, расширить целостное представление о проблеме данной науки. Дети получают профессиональные навыки, которые способствуют дальнейшей социально-бытовой и профессионально-трудовой адаптации в обществе.

Образовательная деятельность осуществляется по общеобразовательным программам дополнительного образования в соответствии с возрастными и индивидуальными особенностями детей, состоянием их соматического и психического здоровья и стандартами второго поколения (ФГОС).

Цели курса:

Опираясь на индивидуальные образовательные запросы и способности каждого ребенка при реализации программы внеурочной деятельности по физике «Занимательная физика», можно достичь основной цели - развить у обучающихся стремление к дальнейшему самоопределению, интеллектуальной, научной и практической самостоятельности, познавательной активности. Поэтому целями программы занятий внеурочной деятельности по физике «Занимательная физика» для учащихся 8 классов являются:

- развитие у учащихся познавательных интересов, интеллектуальных и творческих способностей в процессе решения практических задач и самостоятельного приобретения новых знаний;
- формирование и развитие у учащихся ключевых компетенций учебно познавательных, информационно-коммуникативных, социальных, и как следствие компетенций личностного самосовершенствования;
 - формирование предметных и мета предметных результатов обучения, универсальных учебных действий.
- воспитание творческой личности, способной к освоению передовых технологий и созданию своих собственных разработок, к выдвижению новых идей и проектов;
 - реализация деятельностного подхода к предметному обучению на занятиях внеурочной деятельности по физике.
 - в яркой и увлекательной форме расширять и углублять знания, полученные учащимися на уроках;
 - показать использование знаний в практике, в жизни;
 - раздвинуть границы учебника, зажечь учащихся стремлением как можно больше узнать, понять;
 - раскрыть перед учащимися содержание и красоту физики.

Особенностью внеурочной деятельности по физике является то, что она направлена на достижение обучающимися в большей степени личностных и метапредметных результатов.

Задачи курса

- выявление интересов, склонностей, способностей, возможностей учащихся к различным видам деятельности;
- формирование представления о явлениях и законах окружающего мира, с которыми школьники сталкиваются в повседневной жизни;
- формирование представления о научном методе познания;
- развитие интереса к исследовательской деятельности;
- развитие опыта творческой деятельности, творческих способностей;
- развитие навыков организации научного труда, работы со словарями и энциклопедиями;
- создание условий для реализации во внеурочное время приобретенных универсальных учебных действий в урочное время;
- развитие опыта неформального общения, взаимодействия, сотрудничества;
- расширение рамок общения с социумом.
- формирование навыков построения физических моделей и определения границ их применимости.
- совершенствование умений применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания, использования современных информационных технологий;
 - использование приобретённых знаний и умений для решения практических, жизненных задач;
 - включение учащихся в разнообразную деятельность: теоретическую, практическую, аналитическую, поисковую;
 - выработка гибких умений переносить знания и навыки на новые формы учебной работы;
- развитие сообразительности и быстроты реакции при решении новых различных физических задач, связанных с практической деятельностью.

Результаты освоения курса внеурочной деятельности личностные результаты:

- -готовность и способность обучающихся к саморазвитию и личностному самоопределению;
- сформированность их мотивации к обучению и целенаправленной познавательной деятельности,
- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники;
 - формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения. метапредметные результаты

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию;
 - умение генерировать идеи и определять средства, необходимые для их реализации;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников, и новых информационных технологий для решения познавательных задач;
 - умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
 - использование различных источников для получения научной информации;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
 - освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем. предметные результаты:
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты;
 - умения обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул;
- умения обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
 - умения структурировать изученный материал и естественнонаучную информацию, полученную из других источников;
 - умения применять теоретические знания на практике, решать задачи на применение полученных знаний.
 - формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания;
- формирование первоначальных представлений о физической сущности явлений природы (механических, тепловых, электромагнитных), видах материи (вещество и поле), движении как способе существования материи; овладение понятийным аппаратом и символическим языком физики;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду;

-развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;

- формирование представлений о значении естественных наук в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники.

В результате изучения курса внеурочной деятельности ученик научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;
- описывать изученные свойства тел и механические явления, используя физические величины; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы; при этом различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки изученных физических моделей;
- решать задачи, используя физические законы и формулы, на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты;

распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;

- описывать изученные свойства тел и тепловые явления, используя физические величины;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
 - решать задачи, используя закон сохранения энергии в тепловых процессах;

распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений;

- описывать изученные свойства тел и электромагнитные явления, используя физические величины;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое

выражение;

• решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность

тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты;

- объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света;
- измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- понимать смысл основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света.

Ученик получит возможность научиться:

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, д ля сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины. различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;
 - выбирать и изготавливать модели;
 - защищать работы и проекты исследовательского характера

Требования к уровню подготовки учащихся в результате усвоения курса:

Знать:

- закон сохранения и превращения энергии в механических и тепловых процессах.
- особенности физических характеристик воды.
- условия возникновения и существования электрического тока;
- формулы закона Ома для участка цепи, для расчета сопротивления проводников;
- зависимость сопротивления проводников от температуры;
- законы последовательного и параллельного соединения проводников;
- формулы для расчета мощности тока;
- закон отражения и преломления света.

Уметь:

- описывать и объяснять физические явления;
- использовать физические приборы и измерительные инструменты для измерения физических величин;
- приводить примеры практического использования физических знаний;
- решать задачи на практическое использование физических законов;
- использовать приобретенные знания и умения в повседневной жизни.
- применять формулы для расчета: количество теплоты, энергия топлива, нагревание и охлаждение, плавление и кристаллизация, испарение, кипение и конденсация.
 - объяснить путем разбора конкретных проблем, как отдельные наблюдения и эксперименты завершаются установлением общих закономерностей.

Календарно-тематическое планирование

8 класс (1 час в неделю)

№	Наименов ание раздела	Наименование раздела Тема	Кол. час.	Элементы образовательного содержания	Оборудо вание	Дата проведения 8а	Дата проведения 8б
1.	Тепловые	Здравствуй, физика	1	Количество		5,09	
	явления (12 ч)	теплоты!		теплоты, энергия			
				топлива, нагревание			
				и охлаждение,			
				плавление и			
				кристаллизация,			
				испарение, кипение			
				и конденсация.			
2.		Закон сохранения	1	Методы		12,09	
		энергии на		наблюдения,			
		экспериментальных		измерения,			
		задачах.		эксперимента.			
				Решение			
				теоретических и			
				экспериментальных			
				задач.			

3	«Дюжина кухонных	1	Опыты "Фокус	19,09
	экспериментов».		ладони", "Яйцо в	
			бутылке",	
			"Скользящий	
			стакан", "Кипение	
			воды в бумажной	
			кастрюле",	
			Звучащая монета",	
			"Щепотка соли".	
4	Теплоемкость	1	Экспериментал	26,09
	твердых тел и жидкостей.		ьное определение	
			теплоемкости.	
			Расчет	
			теплоемкости.	
5	Особенности	1	Вода.	3,10
	физических		Особенности	
	характеристик воды.		строения.	
			Физические и	
			химические	
			свойства и	
			характеристики.	
6	Наблюдение за	1	Загадки	10,10
	процессом кипения и		процесса кипения.	
	температурой кипения		Сравнение	
	воды.		испарения и	
			кипения.	
7	Зависимость	1	Состояния	17,10
	состояния вещества от		вещества.	
	температуры и давления.		Железный пар	
			и твердый воздух.	
			Получение низких	
			температур.	
8	«Физика в бане».	1	Почему нужно	24,10

			подбрасывать на каменку воду маленькими порциями, а не наливать сразу		
			большими порциями? Зачем на порог холодную воду льют?		
9	Образование облаков. Осадки.	1	Конденсация. Причины и схемы образования облаков, осадков.	7,11	
10	История изобретения парового двигателя.	1	Паровая машина Сэйвери. Большая машина Джона Смита. Паровая машина Ползунова. Джеймс Уатт. Универсальная паровая машина двойного действия.	14,11	
11	Дизельный двигатель: рабочий цикл и расчет КПД.	1	Устройство, принцип действия. Расчет термодинамических параметров и КПД быстроходного автомобильного дизельного двигателя.	21,11	

12		Тепловые двигатели	1	Виды	28,11	
		в авиации.		реактивных		
				двигателей,		
				физические		
				основы		
				реактивного		
				движения при		
				разных		
				скоростях.		
13	Электрич	Электризация тел:	1	История	5,12	
	еские явления	польза или вред?		развития		
	(12 ч)			электризации.		
				Использование и		
				борьба с		
				электризацией.		
14		Осветительная сеть.	1	История	12,12	
		Решение задач по		развития. Задачи по		
		составлению схем		составлению схем		
		различных устройств.		различных		
				устройств.		
15		Схемы различных	1	Составление	19,12	
		устройств (в быту, в		схем используемых		
		промышленности, в		в быту, в		
		игрушках и играх).		промышленности, в		
				игрушках и играх.		
16		Схемы различных	1	Составление	26,12	
		устройств (в быту, в		схем используемых		
		промышленности, в		в быту, в		
		игрушках и играх).		промышленности, в		
				игрушках и играх.		
17		Реостат на службе у	1	Замыкающие и	9,01	
		автоматики.		размыкающие		
				устройства.		

	,		Применение в быту,		
			технике, на		
			производстве.		
18	Зависимость	1	Удельное	16,01	
	сопротивления		сопротивление		
	проводников от		проводников и		
	температуры.		непроводников.		
19	Смешанное	1	Эксперимента	23,01	
	соединение проводников.		льное изучение		
			смешанного		
			соединения		
			проводников.		
20	Смешанное	1	Эксперимента	30,01	
	соединение проводников.		льное изучение		
			смешанного		
			соединения		
			проводников.		
21	Смешанное	1	Эксперимента	6,02	
	соединение проводников.		льное изучение		
			смешанного		
			соединения		
			проводников.		
22	Расчет	1	Задачи на	13,02	
	потребляемой		расчет		
	электроэнергии.		потребляемой		
22	7	4	электроэнергии.		
23	Расчет	1	Задачи на	20,02	
	потребляемой		расчет		
	электроэнергии.		потребляемой		
2.4		4	электроэнергии.	27.02	
24	Электричество в	1	Работы	27,02	
	животных и растениях, в		Гальвани. Роль		
	живых клетках.		биоэлектрических		

				потенциалов.		
25	Оптическ	Океан света.	1	Световые и	5,03	
	ие явления (11			оптические явления.		
26	ч.)	Сферическое	1	Изображение	12,03	
		зеркало (выпуклое).		предметов в		
				выпуклом зеркале.		
				Особенности их		
				построения.		
27		Сферическое	1	Изображение	19,03	
		зеркало (вогнутое).		предметов в		
				вогнутом зеркале.		
				Особенности и		
				построение.		
28		Построение хода	1	Задачи на	2,04	
		световых лучей сквозь		построение хода		
		призмы.		световых лучей		
				сквозь призмы.		
29		Построение	1	Построение	9,04	
		изображений, даваемых		изображений с		
		системой собирающих и		помощью системы		
		рассеивающих линз.		собирающих и		
				рассеивающих линз.		
30		Построение	1	Построение	16,04	
		изображений, даваемых		изображений с		
		системой собирающих и		помощью системы		
		рассеивающих линз.		собирающих и		
21			4	рассеивающих линз.	22.04	
31		Построение	1	Построение	23,04	
		изображений, даваемых		изображений с		
		системой собирающих и		помощью системы		
		рассеивающих линз.		собирающих и		
22		D "	4	рассеивающих линз.	5 0 5	
32		Расчет оптической	l l	Задачи на	7,05	

	силы системы из		расчет оптической	
	собирающих и		силы системы из	
	рассеивающих линз.		собирающих и	
			рассеивающих линз.	
33	Расчет оптической	1	Задачи на	14,05
	силы системы из		расчет оптической	ŕ
	собирающих и		силы системы из	
	рассеивающих линз.		собирающих и	
	-		рассеивающих линз.	
34	Оптические	1	Виды	21,05
	приборы. Решение задач		оптических	
	на построение		приборов.	
	изображений.		Особенности	
			решения задач на	
			построение	
			изображений.	
35	Оптические	1	Виды	28,05
	приборы. Решение задач		оптических	
	на построение		приборов.	
	изображений.		Особенности	
			решения задач на	
			построение	
			изображений.	

Учебно-методический комплект состоит из следующих пособий:

- 1. Грачев А.В., Погожев В.А., Селиверстов А.В. Физика 8. М.: Вентана-Граф, 2012.
- 2. Перельман Я.И. Занимательная физика. М.: Наука, 1991.
- 3. Хрестоматия по физике. Под ред. А. Спасского. М.: Просвещение, 1991.
- 4. Энциклопедический словарь юного физика. Сост.В.А. Чуянов. М.: Педагогика, 1991.
- 5. Блудов М.И. Беседы по физике. М.: Просвещение, 1984.
- 6. Книга для чтения по физике. Сост. И.Г. Кириллова. М.: Просвещение, 1986.

- 7. Рыженков А.П. Физика. Человек. Окружающая среда. М.: просвещение, 2000.
- 8. Горев Л.А. Занимательные опыты по физике. М.: Просвещение, 1977.
- 9. Билимович Б.Ф. Физические викторины. М.: Просвещение, 1977.
- 10. Тульчинский М.Е. Качественные задачи по физике. 4-е изд. М.: Просвещение, 1972.
- 11. Сборник задач по физике. Сост. Г.Н. Степанова 2-е изд. М.: Просвещение, 1996.
- 12. Рымкевич А.П. Физика. Задачник. 8-е изд. М.: Дрофа, 2004.
- 13. Елькин В.И. Необычные учебные материалы по физике. Библиотека журнала «Физика в школе», 2000, вып.16; 2001, вып 24.
- 14. Скрелин Л.И. Дидактический материал по физике.- М.: Просвещение, 1989.
- 15. Малфеев Р.И. Творческие задания по физике. М.: Просвещение, 1971.
- 16. Низамов И.М. Задачи по физике с техническим содержанием. М.: Просвещение, 1980.