ЭП

Документ подписан электронной подписью
06.10.2025 21:24, Гришина Людмила Владимировна, Директор школы
Ключ электроннй подписи

 

АННОТАЦИЯ

К РАБОЧЕЙ ПРОГРАММЕ ПО УЧЕБНОМУ КУРСУ «ГЕОМЕТРИЯ»

10-11 КЛАСС

Рабочая программа по учебному предмету «Математика», учебный курс «Геометрия» (предметная область «Математика и информатика») (далее соответственно – программа по математике, учебного курса «Геометрия») на уровне среднего общего образования составлена на основе Требований к результатам освоения ООП СОО, Федерального государственного образовательного стандарта (далее – ФГОС СОО), Федеральной образовательной программы среднего общего образования (далее – ФОП СОО), Федеральной рабочей программы по учебному предмету «Математика» (далее – ФРП «Математика»). При составлении рабочих программ использовались материалы сайта Единое содержание общего образования https://edsoo.ru/, Конструктор рабочих программ https://edsoo.ru/constructor/.

Для реализации программы используются учебники, допущенные к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, приказом Минпросвещения от 26.06.2025 № 495.
Электронные образовательные ресурсы, допущенные к использованию при реализации образовательными организациями имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования приказом Минпросвещения от 23.07.2025 № 551.

 

 

Краткая характеристика программы

Важность учебного курса геометрии на уровне среднего общего образования обусловлена практической значимостью метапредметных и предметных результатов обучения геометрии в направлении личностного развития обучающихся, формирования функциональной математической грамотности, изучения других учебных дисциплин. Развитие у обучающихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также качеств мышления, необходимых для адаптации в современном обществе.

Геометрия является одним из базовых предметов на уровне среднего общего образования, так как обеспечивает возможность изучения как дисциплин естественно-научной направленности, так и гуманитарной.

Логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии и построении цепочки логических утверждений в ходе решения геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности из курса физики.

Умение ориентироваться в пространстве играет существенную роль во всех областях деятельности человека. Ориентация человека во времени и пространстве ― необходимое условие его социального бытия, форма отражения окружающего мира, условие успешного познания и активного преобразования действительности. Оперирование пространственными образами объединяет разные виды учебной и трудовой деятельности, является одним из профессионально важных качеств, поэтому актуальна задача формирования у обучающихся пространственного мышления как разновидности образного мышления ― существенного компонента в подготовке к практической деятельности по многим направлениям.

Цели и задачи изучения учебного предмета

Цель освоения программы учебного курса «Геометрия» на базовом уровне обучения – общеобразовательное и общекультурное развитие обучающихся через обеспечение возможности приобретения и использования систематических геометрических знаний и действий, специфичных геометрии, возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием геометрии.

Программа по геометрии на базовом уровне предназначена для обучающихся средней школы, не испытывавших значительных затруднений на уровне основного общего образования. Таким образом, обучающиеся на базовом уровне должны освоить общие математические умения, связанные со спецификой геометрии и необходимые для жизни в современном обществе. Кроме этого, они имеют возможность изучить геометрию более глубоко, если в дальнейшем возникнет необходимость в геометрических знаниях в профессиональной деятельности.

Достижение цели освоения программы обеспечивается решением соответствующих задач. Приоритетными задачами освоения курса «Геометрии» на базовом уровне в 10―11 классах являются:

  • формирование представления о геометрии как части мировой культуры и осознание её взаимосвязи с окружающим миром;
  • формирование представления о многогранниках и телах вращения как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира;
  • формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения;
  • овладение методами решения задач на построения на изображениях пространственных фигур;
  • формирование умения оперировать основными понятиями о многогранниках и телах вращения и их основными свойствами;
  • овладение алгоритмами решения основных типов задач; формирование умения проводить несложные доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием;
  • развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления;
  • формирование функциональной грамотности, релевантной геометрии: умение распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке геометрии и создавать геометрические модели, применять освоенный геометрический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Отличительной особенностью программы является включение в курс стереометрии в начале его изучения задач, решаемых на уровне интуитивного познания, и определённым образом организованная работа над ними, что способствуют развитию логического и пространственного мышления, стимулирует протекание интуитивных процессов, мотивирует к дальнейшему изучению предмета.

Предпочтение отдаётся наглядно-конструктивному методу обучения, то есть теоретические знания имеют в своей основе чувственность предметно-практической деятельности. Развитие пространственных представлений у учащихся в курсе стереометрии проводится за счёт решения задач на создание пространственных образов и задач на оперирование пространственными образами. Создание образа проводится с опорой на наглядность, а оперирование образом – в условиях отвлечения от наглядности, мысленного изменения его исходного содержания.

Основные содержательные линии курса «Геометрии» в 10–11 классах: «Многогранники», «Прямые и плоскости в пространстве», «Тела вращения», «Векторы и координаты в пространстве». Формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения на уровне среднего общего образования.

Содержание образования, соответствующее предметным результатам освоения рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы овладение геометрическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, чтобы новые знания включались в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.

Место в учебном плане

Рабочая программа учебного курса «Геометрия» (базовый уровень) в 10-11-х классах рассчитана на 102 учебных часа. Учебный план на изучение геометрии в 10 классе отводит по 68 учебных часов (2 часа в неделю) при 34 учебных неделях, в 11 классе 34 учебных часа (1 час в неделю) при 34 учебных недель за счет обязательной части учебного плана основного общего образования.

Проверяемые требования к результатам освоения основной образовательной программы

10 КЛАСС

Код проверяемого результата

Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования

7 Геометрия

7.1 Оперировать понятиями: точка, прямая, плоскость

7.2 Применять аксиомы стереометрии и следствия из них при решении геометрических задач

7.3 Оперировать понятиями: параллельность и перпендикулярность прямых и плоскостей

7.4 Классифицировать взаимное расположение прямых и плоскостей в пространстве

7.5 Оперировать понятиями: двугранный угол, грани двугранного угла, ребро двугранного угла, линейный угол двугранного угла, градусная мера двугранного угла

7.6 Оперировать понятиями: многогранник, выпуклый и невыпуклый многогранник, элементы многогранника, правильный многогранник

7.7 Распознавать основные виды многогранников (пирамида, призма, прямоугольный параллелепипед, куб)

7.8 Классифицировать многогранники, выбирая основания для классификации (выпуклые и невыпуклые многогранники, правильные многогранники, прямые и наклонные призмы, параллелепипеды)

7.9 Оперировать понятиями: секущая плоскость, сечение многогранников

7.10 Объяснять принципы построения сечений многогранников, используя метод следов

7.11 Строить сечения многогранников методом следов, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу

7.12 Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление расстояний между двумя точками, от точки до прямой, от точки

до плоскости, между скрещивающимися прямыми

7.13 Решать задачи на нахождение геометрических величин по образцам или алгоритмам, применяя известные аналитические методы при решении стандартных математических задач на вычисление углов между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями, двугранных углов

7.14 Вычислять объёмы и площади поверхностей многогранников (призма, пирамида) с применением формул, вычислять соотношения между площадями поверхностей, объёмами подобных многогранников

7.15 Оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры

7.16 Извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках

7.17 Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме

7.18 Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач

7.19 Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве

7.20 Применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин

 

11 КЛАСС

Код проверяемого результата Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования

6 Геометрия

6.1 Оперировать понятиями: цилиндрическая поверхность, образующие цилиндрической поверхности, цилиндр, коническая поверхность, образующие конической поверхности, конус, сферическая поверхность

6.2 Распознавать тела вращения (цилиндр, конус, сфера и шар)

6.3 Объяснять способы получения тел вращения

6.4 Классифицировать взаимное расположение сферы и плоскости

6.5 Оперировать понятиями: шаровой сегмент, основание сегмента, высота сегмента, шаровой слой, основание шарового слоя, высота шарового слоя, шаровой сектор

6.6 Вычислять объёмы и площади поверхностей тел вращения, геометрических тел с применением формул

6.7 Оперировать понятиями: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения

6.8 Вычислять соотношения между площадями поверхностей и объёмами подобных тел

6.9 Изображать изучаемые фигуры от руки и с применением простых чертёжных инструментов

6.10 Выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу; строить сечения тел вращения

6.11 Извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках

6.12 Применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме

6.13 Оперировать понятием: вектор в пространстве

6.14 Выполнять действия сложения векторов, вычитания векторов и умножения вектора на число, объяснять, какими свойствами они обладают

6.15 Применять правило параллелепипеда при сложении векторов

6.16 Оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы

6.17 Находить сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам

6.18 Задавать плоскость уравнением в декартовой системе координат

6.19 Решать простейшие геометрические задачи на применение векторно-координатного метода

6.20 Решать задачи на доказательство математических отношений и нахождение геометрических величин по образцам или алгоритмам, применяя известные методы при решении стандартных математических задач

6.21 Применять простейшие программные средства и электронно-коммуникационные системы при решении стереометрических задач

6.22 Приводить примеры математических закономерностей в природе и жизни, распознавать проявление законов геометрии в искусстве

6.23 Применять полученные знания на практике: анализировать реальные ситуации и применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин

 

Проверяемые элементы содержания

 

10 КЛАСС

Код Проверяемый элемент содержания

7 Геометрия

7.1 Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них

7.2 Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трёх прямых, параллельность прямой и плоскости. Углы

с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства параллельных плоскостей. Простейшие пространственные фигуры на плоскости: тетраэдр, куб, параллелепипед, построение сечений

7.3 Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, проекция фигуры на плоскость. Перпендикулярность плоскостей: признак перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах

7.4 Понятие многогранника, основные элементы многогранника, выпуклые и невыпуклые многогранники, развёртка многогранника. Призма: n-угольная призма, грани и основания призмы, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его свойства. Пирамида: n-угольная пирамида, грани и основание пирамиды, боковая и полная поверхность пирамиды, правильная и усечённая пирамида. Элементы призмы и пирамиды. Правильные многогранники: понятие правильного многогранника, правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдругие Сечения призмы и пирамиды

7.5 Симметрия в пространстве: симметрия относительно точки, прямой, плоскости. Элементы симметрии в пирамидах, параллелепипедах, правильных многогранниках

7.6 Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности правильной пирамиды, теорема о площади усечённой пирамиды. Понятие об объёме. Объём пирамиды, призмы

7.7 Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел

 

11 КЛАСС

Код Проверяемый элемент содержания

6 Геометрия

6.1 Цилиндрическая поверхность, образующие цилиндрической поверхности, ось цилиндрической поверхности. Цилиндр: основания и боковая поверхность, образующая и ось, площадь боковой и полной поверхности

6.2 Коническая поверхность, образующие конической поверхности, ось и вершина конической поверхности. Конус: основание и вершина, образующая и ось, площадь боковой и полной поверхности. Усечённый конус: образующие и высота, основания и боковая поверхность

6.3 Сфера и шар: центр, радиус, диаметр, площадь поверхности сферы. Взаимное расположение сферы и плоскости, касательная плоскость к сфере, площадь сферы

6.4 Изображение тел вращения на плоскости. Развёртка цилиндра и конуса

6.5 Комбинации тел вращения и многогранников. Многогранник, описанный около сферы, сфера, вписанная в многогранник, или тело вращения

6.6 Понятие об объёме. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём цилиндра, конуса. Объём шара и площадь сферы

6.7 Подобные тела в пространстве. Соотношения между площадями поверхностей, объёмами подобных тел

6.8 Сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара

6.9 Вектор на плоскости и в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по трём некомпланарным векторам. Правило параллелепипеда. Решение задач, связанных с применением правил действий с векторами

6.10 Прямоугольная система координат в пространстве. Координаты вектора. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Координатно-векторный метод при решении геометрических задач

Проверяемые на ЕГЭ по геометрии требования к результатам освоения основной образовательной программы среднего общего образования

Код проверяемого требования Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования

1 Владение методами доказательств, алгоритмами решения задач; умение формулировать и оперировать понятиями: определение, аксиома, теорема, следствие, свойство, признак, доказательство, равносильные формулировки; применять их; умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать метод математической индукции; проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений; умение оперировать понятиями: множество, подмножество, операции над множествами; умение использовать теоретико-множественный аппарат для описания реальных процессов и явлений и при решении задач, в том числе из других учебных предметов; умение оперировать понятиями: граф, связный граф, дерево, цикл, граф на плоскости; умение задавать и описывать графы различными способами; использовать графы при решении задач

2 Умение оперировать понятиями: натуральное число, целое число, степень с целым показателем, корень натуральной степени, степень с рациональным показателем, степень с действительным показателем, логарифм числа, синус, косинус и тангенс произвольного числа, остаток по модулю, рациональное число, иррациональное число, множества натуральных, целых, рациональных, действительных чисел; умение использовать признаки делимости, наименьший общий делитель и наименьшее общее кратное, алгоритм Евклида при решении задач; знакомство с различными позиционными системами счисления; умение выполнять вычисление значений и преобразования выражений со степенями и логарифмами, преобразования дробно-рациональных выражений; умение оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия; умение задавать последовательности, в том числе с помощью рекуррентных формул; умение оперировать понятиями: комплексное число, сопряжённые комплексные числа, модуль и аргумент комплексного числа, форма записи комплексных чисел (геометрическая, тригонометрическая и алгебраическая); уметь производить арифметические действия с комплексными числами; приводить примеры использования комплексных чисел; оперировать понятиями: матрица 2×2 и 3×3, определитель матрицы, геометрический смысл определителя

3 Умение оперировать понятиями: рациональные, иррациональные, показательные, степенные, логарифмические, тригонометрические уравнения и неравенства, их системы; умение оперировать понятиями: тождество, тождественное преобразование, уравнение, неравенство, система уравнений и неравенств, равносильность уравнений, неравенств и систем; умение решать уравнения, неравенства и системы с помощью различных приёмов; решать уравнения, неравенства и системы с параметром; применять уравнения, неравенства, их системы для решения математических задач и задач из различных областей науки и реальной жизни

4 Умение оперировать понятиями: функция, чётность функции, периодичность функции, ограниченность функции, монотонность функции, экстремум функции, наибольшее и наименьшее значения функции на промежутке, непрерывная функция, асимптоты графика функции, первая и вторая производная функции, геометрический и физический смысл производной, первообразная, определённый интеграл; умение находить асимптоты графика функции; умение вычислять производные суммы, произведения, частного и композиции функций, находить уравнение касательной к графику функции; умение находить производные элементарных функций; умение использовать производную для исследования функций, находить наибольшие и наименьшие значения функций; строить графики многочленов с использованием аппарата математического анализа; применять производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических и физических задачах; находить площади и объёмы фигу с помощью интеграла; приводить примеры математического моделирования с помощью дифференциальных уравнений

5 Умение оперировать понятиями: график функции, обратная функция, композиция функций, линейная функция, квадратичная функция, рациональная функция, степенная функция, тригонометрические функции, обратные тригонометрические функции, показательная и логарифмическая функции; умение строить графики изученных функций, выполнять преобразования графиков функций, использовать графики для изучения процессов и зависимостей, при решении задач из других учебных предметов и задач из реальной жизни; выражать формулами зависимости между величинами; использовать свойства и графики функций для решения уравнений, неравенств и задач с параметрами; изображать на координатной плоскости множества решений уравнений, неравенств и их систем

6 Умение решать текстовые задачи разных типов (в том числе на проценты, доли и части, на движение, работу, стоимость товаров и услуг, налоги, задачи из области управления личными и семейными финансами); составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать полученное решение и оценивать правдоподобность результатов; умение моделировать реальные ситуации на языке математики; составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат

7 Умение оперировать понятиями: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия, стандартное отклонение числового набора; умение извлекать, интерпретировать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства реальных процессов и явлений; представлять информацию с помощью таблиц и диаграмм; исследовать статистические данные, в том числе с применением графических методов и электронных средств; графически исследовать совместные наблюдения с помощью диаграмм рассеивания и линейной регрессии

8 Умение оперировать понятиями: случайный опыт и случайное событие, вероятность случайного события; умение вычислять вероятность с использованием графических методов; применять формулы сложения и умножения вероятностей, формулу полной вероятности, формулу Бернулли, комбинаторные факты и формулы; оценивать вероятности реальных событий; умение оперировать понятиями: случайная величина, распределение вероятностей, математическое ожидание, дисперсия и стандартное отклонение случайной величины, функции распределения и плотности равномерного, показательного и нормального распределений; умение использовать свойства изученных распределений для решения задач; знакомство с понятиями: закон больших чисел, методы выборочных исследований; умение приводить примеры проявления закона больших чисел в природных и общественных явлениях; умение оперировать понятиями: сочетание, перестановка, число сочетаний, число перестановок; бином Ньютона; умение применять комбинаторные факты и рассуждения для решения задач; оценивать вероятности реальных событий; составлять вероятностную модель и интерпретировать полученный результат

9 Умение оперировать понятиями: точка, прямая, плоскость, пространство, отрезок, луч, величина угла, плоский угол, двугранный угол, трёхгранный угол, скрещивающиеся прямые, параллельность и перпендикулярность прямых и плоскостей, угол между прямыми, угол между прямой и плоскостью, угол между плоскостями, расстояние от точки до плоскости, расстояние между прямыми, расстояние между плоскостями; умение использовать при решении задач изученные факты и теоремы планиметрии; умение оценивать размеры объектов окружающего мира; строить математические модели с помощью геометрических понятий и величин, решать связанные с ними практические задачи

10 Умение оперировать понятиями: площадь фигуры, объём фигуры, многогранник, правильный многогранник, сечение многогранника, куб, параллелепипед, призма, пирамида, фигура и поверхность вращения, цилиндр, конус, шар, сфера, площадь сферы, площадь поверхности пирамиды, призмы, конуса, цилиндра, объём куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара, развёртка поверхности, сечения конуса и цилиндра, параллельные оси или основанию, сечение шара, плоскость, касающаяся сферы, цилиндра, конуса; умение строить сечение многогранника, изображать многогранники, фигуры и поверхности вращения, их сечения, в том числе с помощью электронных средств; умение применять свойства геометрических фигур, самостоятельно формулировать определения изучаемых фигур, выдвигать гипотезы о свойствах и признаках геометрических фигур, обосновывать или опровергать их; умение проводить классификацию фигур по различным признакам, выполнять необходимые дополнительные построения

11 Умение оперировать понятиями: движение в пространстве, параллельный перенос, симметрия на плоскости и в пространстве, поворот, преобразование подобия, подобные фигуры; умение распознавать равные и подобные фигуры, в том числе в природе, искусстве, архитектуре; использовать геометрические отношения при решении задач; находить геометрические величины (длина, угол, площадь, объём) при решении задач

из других учебных предметов и из реальной жизни; умение вычислять геометрические величины (длина, угол, площадь, объём, площадь поверхности), используя изученные формулы и методы, в том числе: площадь поверхности пирамиды, призмы, конуса, цилиндра, площадь сферы; объём куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара; умение находить отношение объёмов подобных фигур

12 Умение оперировать понятиями: прямоугольная система координат, вектор, координаты точки, координаты вектора, сумма векторов, произведение вектора на число, разложение вектора по базису, скалярное произведение, векторное произведение, угол между векторами; умение использовать векторный и координатный метод для решения геометрических задач и задач других учебных предметов

13 Умение выбирать подходящий метод для решения задачи; понимание значимости математики в изучении природных и общественных процессов и явлений; умение распознавать проявление законов математики в искусстве, умение приводить примеры математических открытий российской и мировой математической науки

Перечень элементов содержания, проверяемых на ЕГЭ по геометрии

Код Проверяемый элемент содержания

1 Числа и вычисления

1.1 Натуральные и целые числа. Признаки делимости целых чисел

1.2 Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби

1.3 Арифметический корень натуральной степени. Действия с арифметическими корнями натуральной степени

1.4 Степень с целым показателем. Степень с рациональным показателем. Свойства степени

1.5 Синус, косинус и тангенс числового аргумента. Арксинус, арккосинус, арктангенс числового аргумента

1.6 Логарифм числа. Десятичные и натуральные логарифмы

1.7 Действительные числа. Арифметические операции с действительными числами. Приближённые вычисления, правила округления, прикидка и оценка результата вычислений

1.8 Преобразование выражений

1.9 Комплексные числа

2 Уравнения и неравенства

2.1 Целые и дробно-рациональные уравнения

2.2 Иррациональные уравнения

2.3 Тригонометрические уравнения

2.4 Показательные и логарифмические уравнения

2.5 Целые и дробно-рациональные неравенства

2.6 Иррациональные неравенства

2.7 Показательные и логарифмические неравенства

2.8 Тригонометрические неравенства

2.9 Системы и совокупности уравнений и неравенств

2.10 Уравнения, неравенства и системы с параметрами

2.11 Матрица системы линейных уравнений. Определитель матрицы

3 Функции и графики

3.1 Функция, способы задания функции. График функции. Взаимно обратные функции. Чётные и нечётные функции. Периодические функции

3.2 Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значение функции на проме¬жутке

3.3 Степенная функция с натуральным и целым показателем. Её свойства и график. Свойства и график корня n-ой степени

3.4 Тригонометрические функции, их свойства и графики

3.5 Показательная и логарифмическая функции, их свойства и графики

3.6 Точки разрыва. Асимптоты графиков функций. Свойства функций, непрерывных на отрезке

3.7 Последовательности, способы задания последовательностей

3.8 Арифметическая и геометрическая прогрессии. Формула сложных процентов

4 Начала математического анализа

4.1 Производная функции. Производные элементарных функций

4.2 Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значения функции на отрезке

4.3 Первообразная. Интеграл

5 Множества и логика

5.1 Множество, операции над множествами. Диаграммы Эйлера – Венна

5.2 Логика

6 Вероятность и статистика

6.1 Описательная статистика

6.2 Вероятность

6.3 Комбинаторика

7 Геометрия

7.1 Фигуры на плоскости

7.2 Прямые и плоскости в пространстве

7.3 Многогранники

7.4 Тела и поверхности вращения

7.5 Координаты и векторы